Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2020): 20232752, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593849

RESUMO

The repeated returns of vertebrates to the marine ecosystems since the Triassic serve as an evolutionary model to understand macroevolutionary change. Here we investigate the effects of the land-to-sea transition on disparity and constraint of the vertebral column in aquatic carnivorans (Carnivora; Pinnipedia) to assess how their functional diversity and evolutionary innovations influenced major radiations of crown pinnipeds. We use three-dimensional geometric morphometrics and multivariate analysis for high-dimensional data under a phylogenetic framework to quantify vertebral size and shape in living and extinct pinnipeds. Our analysis demonstrates an important shift in vertebral column evolution by 10-12 million years ago, from an unconstrained to a constrained evolutionary scenario, a point of time that coincides with the major radiation of crown pinnipeds. Moreover, we also demonstrate that the axial skeleton of phocids and otariids followed a different path of morphological evolution that was probably driven by their specialized locomotor strategies. Despite this, we found a significant effect of habitat preference (coastal versus pelagic) on vertebral morphology of crown taxa regardless of the family they belong. In summary, our analysis provides insights into how the land-to-sea transition influenced the complex evolutionary history of pinniped vertebral morphology.


Assuntos
Caniformia , Carnívoros , Animais , Filogenia , Ecossistema , Coluna Vertebral/anatomia & histologia , Evolução Biológica
2.
Am J Biol Anthropol ; : e24932, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516761

RESUMO

OBJECTIVES: Ecogeographic variation in human nasal anatomy has historically been analyzed on skeletal morphology and interpreted in the context of climatic adaptations to respiratory air-conditioning. Only a few studies have analyzed nasal soft tissue morphology, actively involved in air-conditioning physiology. MATERIALS AND METHODS: We used in vivo computer tomographic scans of (N = 146) adult individuals from Cambodia, Chile, Russia, and Spain. We conducted (N = 438) airflow simulations during inspiration using computational fluid dynamics to analyze the air-conditioning capacities of the nasal soft tissue in the inflow, functional, and outflow tract, under three different environmental conditions: cold-dry; hot-dry; and hot-humid. We performed statistical comparisons between populations and sexes. RESULTS: Subjects from hot-humid regions showed significantly lower air-conditioning capacities than subjects from colder regions in all the three conditions, specifically within the isthmus region in the inflow tract, and the anterior part of the internal functional tract. Posterior to the functional tract, no differences were detected. No differences between sexes were found in any of the tracts and under any of the conditions. DISCUSSION: Our statistical analyses support models of climatic adaptations of anterior nasal soft tissue morphology that fit with, and complement, previous research on dry skulls. However, our results challenge a morpho-functional model that attributes air-conditioning capacities exclusively to the functional tract located within the nasal cavity. Instead, our findings support studies that have suggested that both, the external nose and the intra-facial soft tissue airways contribute to efficiently warming and humidifying air during inspiration. This supports functional interpretations in modern midfacial variation and evolution.

3.
Commun Biol ; 6(1): 1141, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949962

RESUMO

In this study, we investigate how the terrestrial-aquatic transition influenced patterns of axial integration and modularity in response to the secondary adaptation to a marine lifestyle. We use 3D geometric morphometrics to quantify shape covariation among presacral vertebrae in pinnipeds (Carnivora; Pinnipedia) and to compare with patterns of axial integration and modularity in their close terrestrial relatives. Our results indicate that the vertebral column of pinnipeds has experienced a decrease in the strength of integration among all presacral vertebrae when compared to terrestrial carnivores (=fissipeds). However, separate integration analyses among the speciose Otariidae (i.e., sea lions and fur seals) and Phocidae (i.e., true seals) also suggests the presence of different axial organizations in these two groups of crown pinnipeds. While phocids present a set of integrated "thoracic" vertebrae, the presacral vertebrae of otariids are characterized by the absence of any set of vertebrae with high integration. We hypothesize that these differences could be linked to their specific modes of aquatic locomotion -i.e., pelvic vs pectoral oscillation. Our results provide evidence that the vertebral column of pinnipeds has been reorganized from the pattern observed in fissipeds but is more complex than a simple "homogenization" of the modular pattern of their close terrestrial relatives.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Filogenia , Evolução Biológica , Caniformia/fisiologia , Coluna Vertebral
4.
Biol Lett ; 19(1): 20220483, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693427

RESUMO

The North American cheetah-like cat Miracinonyx trumani is an extinct species that roamed the Pleistocene prairies 13 000 years ago. Although M. trumani is more closely related to the cougar (Puma concolor) than to the living cheetah (Acinonyx jubatus), it is believed that both A. jubatus and M. trumani possess a highly specialized skeleton for fast-running, including limbs adapted for speed at the expense of restricting the ability of prey grappling. However, forelimb dexterity of M. trumani has not been yet investigated. Here, we quantify the 3D-shape of the humerus distal epiphysis as a proxy for elbow-joint morphology in a sample of living cats to determine whether the extinct M. trumani was specialized to kill open-country prey using predatory behaviour based on fast running across the prairies and steppe terrains of the North American Pleistocene. We show that M. trumani had an elbow morphology intermediate to that of P. concolor and A. jubatus, suggesting that M. trumani had a less specialized pursuit predatory behaviour than A. jubatus. We propose that M. trumani probably deployed a unique predatory behaviour without modern analogues. Our results bring into question the degree of ecomorphological convergence between M. trumani and its Old World vicar A. jubatus.


Assuntos
Felidae , Articulações , Animais , Acinonyx/anatomia & histologia , Felidae/anatomia & histologia , Membro Anterior/anatomia & histologia , Articulações/anatomia & histologia , América do Norte , Comportamento Predatório , Puma/anatomia & histologia , Fósseis
5.
J Anat ; 242(4): 642-656, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36584354

RESUMO

The vertebral column is a multicomponent structure whose organization results from developmental and functional demands. According to their distinct somitic origins, individual vertebrae exhibit intravertebral modularity between the centrum and neural spine. However, vertebrae are also organized into larger units called intervertebral modules that result from integration between adjacent vertebrae due to locomotory demands or from common developmental origins due to resegmentation. A previous hypothesis suggested that the boundaries of intervertebral modules coincide with changes in the patterns of intravertebral integration. Here, we explicitly test whether the patterns of modularity and integration between the centrum and neural spine (i.e., intravertebral) in the boundary vertebrae among previously defined intervertebral modules change with respect to those in the vertebrae within intervertebral modules. We quantified intravertebral modularity patterns and quantified the strength of intravertebral integration for each vertebra of the presacral region in 41 species of carnivoran mammals using 3D geometric morphometrics. Our results demonstrate a significant intravertebral modular signal between the centrum and neural spine in all post-cervical vertebrae, including the boundary vertebrae among intervertebral modules. However, the strength of intravertebral integration decreases at the boundary vertebrae. We also found a significant correlation between the degree of intravertebral integration and intervertebral integration. Following our results, we hypothesize that natural selection does not override the integration between the centrum and neural spine at the boundary vertebrae, a pattern that should be influenced by their distinct somitic origins and separate ossification centers during early development. However, natural selection has probably influenced (albeit indirectly) the integration between the centrum and neural spine in the vertebrae that compose the intervertebral modules.


Assuntos
Vértebras Cervicais , Coluna Vertebral , Animais , Mamíferos , Seleção Genética , Locomoção , Extremidades
6.
Front Vet Sci ; 10: 1181036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327815

RESUMO

Flowgy is a semi-automated tool designed to simulate airflow across the nasal passage and detect airflow alterations in humans. In this study, we tested the use and accuracy of Flowgy in non-human vertebrates, using large felids as the study group. Understanding the dynamics of nasal airflow in large felids such as lions (Panthera leo) is crucial for their health and conservation. Therefore, we simulated airflow during inspiration through the nasal passage in three lions (Panthera leo), two of which were siblings (specimens ZPB_PL_002 and ZPB_PL_003), without breathing obstructions. However, one of the specimens (ZPB_PL_001) exhibited a slight obstruction in the nasal vestibule, which precluded the specimen from breathing efficiently. Computed tomography (CT) scans of each specimen were obtained to create detailed three-dimensional models of the nasal passage. These models were then imported into Flowgy to simulate the airflow dynamics. Virtual surgery was performed on ZPB_PL_001 to remove the obstruction and re-simulate the airflow. In parallel, we simulated the respiration of the two sibling specimens and performed an obstructive operation followed by an operation to remove the obstruction at the same level and under the same conditions as the original specimen (ZPB_PL_001). Thus, we obtained a pattern of precision for the operation by having two comparable replicas with the obstructed and operated specimens. The simulations revealed consistent airflow patterns in the healthy specimens, demonstrating the accuracy of Flowgy. The originally obstructed specimen and two artificially obstructed specimens showed a significant reduction in airflow through the right nostril, which was restored after virtual surgery. Postoperative simulation indicated an improvement of >100% in respiratory function. Additionally, the temperature and humidity profiles within the nostrils showed marked improvements after surgery. These findings underscore the potential of Flowgy in simulating nasal airflow and predicting the outcomes of surgical interventions in large felids. This could aid in the early detection of respiratory diseases and inform clinical decision-making, contributing to improved veterinary care and conservation efforts. However, further research is needed to validate these findings in other species and explore the potential of integrating Flowgy with other diagnostic and treatment tools in veterinary medicine.

7.
J Anthropol Sci ; 100: 141-172, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36565458

RESUMO

This paper presents an updated view on the morphological and functional significance of the human respiratory system in the context of human evolutionary anatomy. While usually the respiratory system is treated either from a craniofacial perspective, mostly in the context of nasal evolution and air-conditioning, or from a postcranial perspective featuring on overall thoracic shape changes, here we pursue a holistic perspective on the form, function, integration, and evolutionary change of the entire organismal system in hominins. We first present a brief review of the most important morphological structures, their function, and its potential integration and interaction with the nasal cavity and thoracic skeleton. This is followed by an overview of the most important improvements in methods for the comparative study in recent humans and fossil hominins. We then overview and list a compendium of hominin fossil material currently available for the study. We propose four functional categories of hominin respiratory system configurations that differ potentially with respect to size, shape, biomechanics and/or bioenergetics. Finally, we discuss these and speculate on possible ways for future research into an anatomical system that, despite its under-investigated status, is central to the understanding of the form and functions of the hominin organism and its paleobiology.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Hominidae/anatomia & histologia , Fósseis , Sistema Respiratório
8.
iScience ; 25(12): 105671, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536677

RESUMO

The cheetah Acinonyx jubatus, the fastest living land mammal, is an atypical member of the family Felidae. The extinct feline Miracinonyx trumani, known as the North American cheetah, is thought to have convergently evolved with Acinonyx to pursue fast and open-country prey across prairies and steppe environments of the North American Pleistocene. The brain of Acinonyx is unique among the living felids, but it is unknown whether the brain of the extinct M. trumani is convergent to that of Acinonyx. Here, we investigate the brain of M. trumani from a cranium endocast, using a comparative sample of other big cats. We demonstrate that the brain of M. trumani was different from that of the living A. jubatus. Indeed, its brain shows a unique combination of traits among living cats. This suggests that the case of extreme convergence between Miracinonyx and its living Old World vicar should be reconsidered.

9.
Biol Lett ; 18(4): 20220047, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35382583

RESUMO

Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence.


Assuntos
Evolução Biológica , Vertebrados , Animais , Desenvolvimento Embrionário , Fósseis , Fenótipo , Filogenia
10.
Commun Biol ; 4(1): 863, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267313

RESUMO

Organisms comprise multiple interacting parts, but few quantitative studies have analysed multi-element systems, limiting understanding of phenotypic evolution. We investigate how disparity of vertebral morphology varies along the axial column of mammalian carnivores - a chain of 27 subunits - and the extent to which morphological variation have been structured by evolutionary constraints and locomotory adaptation. We find that lumbars and posterior thoracics exhibit high individual disparity but low serial differentiation. They are pervasively recruited into locomotory functions and exhibit relaxed evolutionary constraint. More anterior vertebrae also show signals of locomotory adaptation, but nevertheless have low individual disparity and constrained patterns of evolution, characterised by low-dimensional shape changes. Our findings demonstrate the importance of the thoracolumbar region as an innovation enabling evolutionary versatility of mammalian locomotion. Moreover, they underscore the complexity of phenotypic macroevolution of multi-element systems and that the strength of ecomorphological signal does not have a predictable influence on macroevolutionary outcomes.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Carnivoridade/fisiologia , Locomoção/fisiologia , Mamíferos/fisiologia , Coluna Vertebral/fisiologia , Análise de Variância , Animais , Atividade Motora/fisiologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , Fatores de Tempo , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X
11.
Evol Lett ; 5(3): 251-264, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136273

RESUMO

Explaining the origin and evolution of a vertebral column with anatomically distinct regions that characterizes the tetrapod body plan provides understanding of how metameric structures become repeated and how they acquire the ability to perform different functions. However, despite many decades of inquiry, the advantages and costs of vertebral column regionalization in anatomically distinct blocks, their functional specialization, and how they channel new evolutionary outcomes are poorly understood. Here, we investigate morphological integration (and how this integration is structured [modularity]) between all the presacral vertebrae of mammalian carnivorans to provide a better understanding of how regionalization in metameric structures evolves. Our results demonstrate that the subunits of the presacral column are highly integrated. However, underlying to this general pattern, three sets of vertebrae are recognized as presacral modules-the cervical module, the anterodorsal module, and the posterodorsal module-as well as one weakly integrated vertebra (diaphragmatic) that forms a transition between both dorsal modules. We hypothesize that the strength of integration organizing the axial system into modules may be associated with motion capability. The highly integrated anterior dorsal module coincides with a region with motion constraints to avoid compromising ventilation, whereas for the posterior dorsal region motion constraints avoid exceeding extension of the posterior back. On the other hand, the weakly integrated diaphragmatic vertebra belongs to the "Diaphragmatic joint complex"-a key region of the mammalian column of exceedingly permissive motion. Our results also demonstrate that these modules do not match with the traditional morphological regions, and we propose natural selection as the main factor shaping this pattern to stabilize some regions and to allow coordinate movements in others.

12.
Biol Lett ; 16(12): 20200792, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33353522

RESUMO

The cave bear (Ursus spelaeus s.l.) was an iconic extinct bear that inhabited the Pleistocene of Eurasia. The cause of extinction of this species is unclear and to identify the actual factors, it is crucial to understand its feeding preferences. Here, we quantified the shape descriptor metrics in three-dimensional (3D) models of the upper teeth (P4-M2) of the cave bear to make inferences about its controversial feeding behaviour. We used comparative samples, including representatives of all living bear species with known diets, as a template. Our topographic analyses show that the complexity of upper tooth rows in living bears is more clearly associated with the mechanical properties of the items consumed than with the type of food. Cave bears exhibit intermediate values on topographic metrics compared with the bamboo-feeder giant panda (Ailuropoda melanoleuca) and specialists in hard mast consumption (Ursus arctos and Ursus thibetanus). The crown topography of cave bear upper teeth suggests that they could chew on tough vegetal resources of low quality with high efficiency, a characteristic that no living bear currently displays. Our results align with a climate-driven hypothesis to explain the extinction of cave bear populations during the Late Pleistocene.


Assuntos
Ursidae , Animais , Cavernas , Dieta , Ecologia , Comportamento Alimentar
13.
J Anat ; 237(6): 1087-1102, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32654137

RESUMO

The sacrum is a key piece of the vertebrate skeleton, since it connects the caudal region with the presacral region of the vertebral column and the hind limbs through the pelvis. Therefore, understanding its form and function is of great relevance in vertebrate ecomorphology. However, it is striking that morphometric studies that quantify its morphological evolution in relation to function are scarce. The main goal of this study is to investigate the morphological evolution of the sacrum in relation to its function in the mammalian order Carnivora, using three-dimensional (3D) geometric morphometrics. Principal component analysis under a phylogenetic background indicated that changes in sacrum morphology are mainly focused on the joint areas where it articulates with other parts of the skeleton allowing resistance to stress at these joints caused by increasing muscle loadings. In addition, we demonstrated that sacrum morphology is related to both the length of the tail relativised to the length of the body, and the length of the body relativised to body mass. We conclude that the sacrum in carnivores has evolved in response to the locomotor requirements of the species analysed, but in locomotion, each family has followed alternative morphological solutions to address the same functional demands.


Assuntos
Evolução Biológica , Carnívoros/anatomia & histologia , Sacro/anatomia & histologia , Animais , Tamanho Corporal/fisiologia , Locomoção/fisiologia , Osteologia , Filogenia
14.
Sci Adv ; 6(14): eaay9462, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270039

RESUMO

The cave bear is one of the best known extinct large mammals that inhabited Europe during the "Ice Age," becoming extinct ≈24,000 years ago along with other members of the Pleistocene megafauna. Long-standing hypotheses speculate that many cave bears died during their long hibernation periods, which were necessary to overcome the severe and prolonged winters of the Last Glacial. Here, we investigate how long hibernation periods in cave bears would have directly affected their feeding biomechanics using CT-based biomechanical simulations of skulls of cave and extant bears. Our results demonstrate that although large paranasal sinuses were necessary for, and consistent with, long hibernation periods, trade-offs in sinus-associated cranial biomechanical traits restricted cave bears to feed exclusively on low energetic vegetal resources during the predormancy period. This biomechanical trade-off constitutes a new key factor to mechanistically explain the demise of this dominant Pleistocene megafaunal species as a direct consequence of climate cooling.


Assuntos
Aclimatação , Cavernas , Clima , Dieta , Fósseis , Modelos Teóricos , Ursidae , Animais , Fenômenos Biomecânicos , Europa (Continente) , Extinção Biológica , Crânio , Ursidae/anatomia & histologia , Ursidae/classificação , Ursidae/genética
15.
J Anat ; 234(5): 622-636, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30861123

RESUMO

In this study, we explore the relationship between orbit anatomy and different ecological factors in carnivorous mammals from a phylogenetic perspective. We calculated the frontation (α), convergence (ß), and orbitotemporal (Ω) angles of the orbit from 3D coordinates of anatomical landmarks in a wide sample of carnivores with different kinds of visual strategy (i.e. photopic, scotopic, and mesopic), habitat (i.e. open, mixed, and closed), and substrate use (i.e. arboreal, terrestrial, and aquatic). We used Bloomberg's K and Pagel's λ to assess phylogenetic signal in frontation, convergence, and orbitotemporal angles. The association of orbit orientation with skull length and ecology was explored using phylogenetic generalized least squares and phylogenetic manova, respectively. Moreover, we also computed phylomorphospaces from orbit orientation. Our results indicate that there is not a clear association between orbit orientation and the ecology of living carnivorans. We hypothesize that the evolution of the orbit in mammalian carnivores represents a new case of an ecological bottleneck specific to carnivorans. New directions for future research are discussed in light of this new evidence.


Assuntos
Carnívoros/anatomia & histologia , Mamíferos/anatomia & histologia , Órbita/anatomia & histologia , Animais , Ecossistema , Fósseis/anatomia & histologia , Filogenia
16.
J Infect Dev Ctries ; 13(6): 465-472, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32058980

RESUMO

INTRODUCTION: Uropathogenic Escherichia coli (UPEC) are the main etiological agent of urinary tract infections (UTIs). Association between different serotypes and UTIs is known, however, some strains are incapable to be serotyped. The aim of this work was to study bthe phenotypical and genotypical characteristics of 113 non-typeable (NT) and auto-agglutinating (AA) E. coli strains, isolated from UTIs in children and adults. METHODOLOGY: The 113 UPEC strains were analyzed by PCR assays using specific primers to determine their serogroups, fimH, papC, iutA, sat, hlyCA and cnf1, virulence associated genes, and chuA, yjaA and TSPE4.C2 for phylogroup determination. Additionally, the diffusion disk method was performed to evaluate the antimicrobial resistance to 18 antimicrobial agents. RESULTS: Using the PCR assay, 63% (71) of the strains were genotyped showing O25 and O75 as the most common serogroups. The virulence genes fimH (86%) and iutA (74%) were the most prevalent, in relation to the phylogroups the commensal (A and B1) and virulent (B2 and D) showed similar frequencies (P > 0.05). The antimicrobial susceptibility test showed a high percentage (73%) of multidrug-resistant strains. CONCLUSIONS: The genotyping allowed identifying the serogroup in many of the strains that could not be typed by traditional serology. The strains carried virulence genes and were multidrug-resistant in both, commensal and virulent phylogroups. Our findings revealed that, in addition to the classical UPEC serogroups, there are pathogenic serogroups not reported yet.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Genótipo , Sorogrupo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Adulto , Antígenos de Bactérias/genética , Criança , Pré-Escolar , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Feminino , Humanos , Masculino , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Fatores de Virulência/genética
17.
Curr Biol ; 28(20): 3260-3266.e3, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30293717

RESUMO

Over the Cenozoic, large cat-like forms have convergently evolved into specialized killers of "megaherbivores" that relied on their large, and laterally compressed (saber-like) canines to rapidly subdue their prey [1-5]. Scimitar- and dirk-toothed sabertooths are distinct ecomorphs that differ in canine tooth length, degree of serration, and postcranial features indicative of dissimilar predatory behavior [6-13]. Despite these differences, it is assumed that they used a similar "canine-shear" bite to kill their prey [14, 15]. We investigated the killing behavior of the scimitar-toothed Homotherium serum and the dirk-toothed Smilodon fatalis using a comparative sample of living carnivores and a new quantitative approach to the analysis of skull function. For the first time, we quantified differences in the relative amount and distribution of cortical and trabecular bone in coronal sections of skulls to assess relative skull stiffness and flexibility [16-19]. We also use finite element analysis to simulate various killing scenarios that load skulls in ways that likely favor distinct proportions of cortical versus trabecular bone across the skull. Our data reveal that S. fatalis had an extremely thick skull and relatively little trabecular bone, consistent with a large investment in cranial strength for a stabbing canine-shear bite. However, H. serum had more trabecular bone and most likely deployed an unusual predatory behavior more similar to the clamp-and-hold technique of the lion than S. fatalis. These data broaden the killing repertoire of sabertooths and highlight the degree of ecological specialization among members of the large carnivore guild during the Late Pleistocene of North America.


Assuntos
Dente Canino/anatomia & histologia , Felidae/anatomia & histologia , Felidae/fisiologia , Comportamento Predatório , Adaptação Biológica , Animais , Fenômenos Biomecânicos , Osso Esponjoso/anatomia & histologia , Osso Cortical/anatomia & histologia
18.
Sci Rep ; 7(1): 17813, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259277

RESUMO

During the late Pleistocene of North America (≈36,000 to 10,000 years ago), saber-toothed cats, American lions, dire wolves, and coyotes competed for prey resources at Rancho La Brea (RLB). Despite the fact that the giant short-faced bear (Arctodus simus) was the largest land carnivoran present in the fauna, there is no evidence that it competed with these other carnivores for prey at the site. Here, for the first time, we report carious lesions preserved in specimens of A. simus, recovered from RLB. Our results suggest that the population of A. simus from RLB was more omnivorous than the highly carnivorous populations from the Northwest. This dietary variation may be a consequence of different competitive pressures.


Assuntos
Cárie Dentária/genética , Ursidae/genética , Animais , Evolução Biológica , Carnívoros/genética , Coiotes/genética , Dieta , Extinção Biológica , Fósseis , América do Norte , Dente/fisiologia
19.
PLoS One ; 11(4): e0152430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054570

RESUMO

We describe cranial and mandibular remains of three undescribed individuals of the giant mustelid Megalictis ferox Matthew, 1907 from the latest Arikareean (Ar4), Early Miocene mammal fauna of Nebraska, and Wyoming (USA) housed at the American Museum of Natural History (New York, USA). Our phylogenetic hypothesis indicates that Ar4 specimens assigned to M. ferox constitute a monophyletic group. We assign three additional species previously referred to Paroligobunis to Megalictis: M. simplicidens, M. frazieri, and "M." petersoni. The node containing these four species of Megalictis and Oligobunis forms the Oligobuninae. We test the hypothesis that Oligobuninae (Megalictis and Oligobunis) is a stem mustelid taxon. Our results indicate that the Oligobuninae form the sister clade to the crown extant mustelids. Based on the cranium, M. ferox is a jaguar-size mustelid and the largest terrestrial mustelid known to have existed. This new material also sheds light on a new ecomorphological interpretation of M. ferox as a bone-crushing durophage (similar to hyenas), rather than a cat-like hypercarnivore, as had been previously described. The relative large size of M. ferox, together with a stout rostrum and mandible made it one of the more powerful predators of the Early Miocene of the Great Plains of North America.


Assuntos
Fósseis , Mustelidae/anatomia & histologia , Mustelidae/classificação , Animais , Mandíbula/anatomia & histologia , Nebraska , Paleontologia/métodos , Filogenia , Crânio/anatomia & histologia , Wyoming
20.
Naturwissenschaften ; 102(5-6): 35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26036823

RESUMO

We investigate the relative development of the carnivoran radial sesamoids to untangle the evolution of this iconic structure. In the pandas (both giant and red), this 'false thumb' is known to perform a grasping role during bamboo feeding in both the red and giant pandas. An original locomotor role has been inferred for ailurids, but this remains to be ascertained for ursids. A large sample of radial sesamoids of Indarctos arctoides from the Miocene of Batallones-3 (Spain) indicates that this early ailuropodine bear displayed a relatively hypertrophied radial sesamoid, with a configuration more similar to that of the red panda and other carnivorans than to that of giant pandas. This false thumb is the first evidence of this feature in the Ursidae, which can be linked to a more herbivorous diet. Moreover, in the two extant pandas, the false thumb should not be interpreted as an anatomical convergence, but as an exaptive convergence regarding its use during the bamboo feeding, which changes the evolutionary view of this singular structure.


Assuntos
Evolução Biológica , Fósseis , Ursidae/anatomia & histologia , Animais , Dieta , Ossos Sesamoides/anatomia & histologia , Ursidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...